

This discussion paper is/has been under review for the journal Hydrology and Earth System Sciences (HESS). Please refer to the corresponding final paper in HESS if available.

Spatio-temporal impact of climate change on the groundwater system

J. Dams¹, E. Salvadore^{1,2}, T. Van Daele³, V. Ntegeka⁴, P. Willems^{1,4}, and O. Batelaan^{1,5}

¹Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

²Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium

³Research Institute for Nature and Forest, Kliniekstraat 25, 1070 Brussels, Belgium

⁴Hydraulics Laboratory, Katholieke Universiteit Leuven, Kasteelpark Arenberg 40 – bus 2448, 3001 Heverlee, Belgium

⁵Department of Earth and Environmental Sciences, K.U. Leuven, Celestijnenlaan 200e – bus 2410, 3001 Heverlee, Belgium

Received: 20 October 2011 – Accepted: 3 November 2011 – Published: 18 November 2011

Correspondence to: O. Batelaan (batelaan@vub.ac.be)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

Given the importance of groundwater for food production and drinking water supply, but also for the survival of groundwater dependent terrestrial ecosystems (GWDTEs) it is essential to assess the impact of climate change on this freshwater resource. In 5 this paper we study with high temporal and spatial resolution the impact of 28 climate change scenarios on the groundwater system of a lowland catchment in Belgium. Our results show for the scenario period 2070–2101 compared with the reference period 1960–1991, a change in annual groundwater recharge between –20 % and +7 %. On average annual groundwater recharge decreases 7 %. Seasonally, in most scenarios 10 the recharge increases during winter but decreases during summer. The altered recharge patterns cause the groundwater level to decrease significantly from September to January. On average the groundwater level decreases about 7 cm with a standard deviation between the scenarios of 5 cm. Groundwater levels in interfluves and upstream areas are more sensitive to climate change than groundwater levels in the 15 river valley. Groundwater discharge to GWDTEs is expected to decrease during late summer and autumn as much as 10 %, though the discharge remains at reference-period level during winter and early spring. As GWDTEs are strongly influenced by temporal dynamics of the groundwater system, close monitoring of groundwater and implementation of adaptive management measures are required to prevent ecological 20 loss.

1 Introduction

There is little doubt that the ongoing climate change will significantly influence the hydrological cycle worldwide (Kundzewicz et al., 2008; Maxwell and Kollet, 2008). Current 25 observations show that already at this moment climate changes are influencing hydrological processes in certain areas (Rosenzweig et al., 2007; Kundzewicz and Döll, 2009). As the IPCC predicts that global atmospheric concentrations of greenhouse

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

gases will continue to rise, it is expected that climate change will continue in the future (Solomon et al., 2007). Freshwater resources are among those systems that are particularly vulnerable to changes in climate (Solomon et al., 2007).

Recent research (Feyen and Dankers, 2009) showed that global warming is likely to amplify drought events over Europe. Especially during drought events groundwater is of vital importance for availability of water for food production and drinking water. Groundwater plays a vital role in maintaining the ecological value of many areas (Solomon et al., 2007; UN WWAP, 2009). Because groundwater is less visible and has a more complex relationship with the climate than surface water bodies it has been studied less than surface water bodies up till now (Kundzewicz and Döll, 2009; Scibek et al., 2007). However, there is an increasing awareness to protect the groundwater resources and to assess the impact of future land-use and climate changes (Solomon et al., 2007; Green et al., 2011).

In order to assess the impact of climate change on the groundwater system there is a need for reliable climate change scenarios and consistent methods to simulate water fluxes recharging and discharging the groundwater system. The uncertainty on climate change forecasts is still very high due to uncertainties in the future world visions, influencing for example the emissions of greenhouse gas, land use changes, etc. and uncertainties caused by the General and Regional Circulation Models (GCMs and RCMs) (Murphy et al., 2004). In order to optimally incorporate the current knowledge on climate change, Kundzewicz et al. (2008) and Allen et al. (2010) suggest a joint analysis of ensembles of climate models driven by multiple emission scenarios. Hendricks Franssen (2009) emphasizes the importance of downscaling of future precipitation from GCMs for impact assessments on hydrology.

Previous studies show a large variety in complexity of approaches to simulate groundwater recharge. For example Chen et al. (2002), Hsu et al. (2006) and Serrat-Capdevila et al. (2007) apply a simple linear function including precipitation and temperature to simulate groundwater recharge, while Woldeamlak et al. (2007), Jyrkama and Sykes (2007), van Roosmalen et al. (2009), McCallum et al. (2010) amongst others

Impact climate change on groundwater

J. Dams et al.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

Impact climate change on groundwater

J. Dams et al.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

chosen from the European project PRUDENCE (Christensen and Christensen, 2007). By applying this ensemble of climate change models we obtain uncertainty bounds on the impacts of the climate change on the groundwater system. We limit the study to climate change impacts, disregarding other expected changes such as land-use change
5 (Dams et al., 2008).

The Kleine Nete basin, situated in Belgium, was chosen as a study area. Due to the sandy soils and low slopes a large fraction of the effective rainfall in the basin percolates to the groundwater. The groundwater in the basin is extensively used for drinking water supply, and hosts important groundwater dependent wetlands. An impact assessment
10 is therefore required to assess whether adaptive measures are essential to protect the groundwater system and related groundwater dependent natural vegetations from expected climate changes.

2 Study area

The study area is the Kleine Nete basin, which is a sub-basin of the Scheldt basin
15 (Fig. 1). The Kleine Nete basin has an area of 581 km^2 . The elevation ranges from 3 to 48 m TAW, the average slope is about 0.4 %. Interfluves are slightly elevated, the valleys broad and swampy. The dominant soil texture in the basin is sand, though in the valleys some loamy sand, sandy loam and sandy clay is present. The region has a temperate climate characterized by a warm summer and a cool winter with little snow-
20 fall. The average annual precipitation during the period 1960–1991 was 828 mm with a standard deviation of 136 mm. Precipitation is nearly equally distributed throughout the year and the different raingauges, indicated in Fig. 1, show similar annual precipitation amounts. Over the same period 1960–1991 the estimated average annual potential evapotranspiration (PET) is 664 mm with a standard deviation of 47 mm. The
25 subsurface of the model area is limited to the Quaternary and Tertiary sediments which are confined at the bottom by the Boom clay aquitard deposited during the Oligocene epoch. From depositionally oldest to youngest the hydrostratigraphy of the study area

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Impact climate change on groundwater

J. Dams et al.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

comprises the Miocene aquifer, the Pliocene clay layer, the Pleistocene and Pliocene aquifer, the Campine clay-sand-complex and the Quaternary aquifer. An overview of the formations is given in Table 1. Only the Miocene aquifer and the Quaternary aquifer are found throughout the basin, other hydrostratigraphic units are discontinuous as shown in Fig. 2. Figure 3 shows a 3-D view of the geological layers along a cross-section over the area. The Miocene aquifer has an average thickness of about 187 m and in the eastern part of the basin this aquifer reaches a maximum thickness of 410 m (Wouters and Vandenberghe, 1994).

The land cover in the study area consists mainly of agricultural fields including meadows (60 %), coniferous and mixed forest (20 %) and urban areas (10 %). Groundwater is extensively used in the basin, in total there are 565 wells which extract a total of $54\,291\text{ m}^3\text{ day}^{-1}$ of which about $30\,200\text{ m}^3\text{ day}^{-1}$ is extracted by a single water production company for drinking water supply. Most important pumping wells are indicated in Fig. 1.

Within the Kleine Nete catchment several ecologically important areas are protected by the European Natura2000 network, set up for the protection of Europe's most vulnerable habitats. Several of these habitats depend largely on oligotrophic and mesotrophic site conditions, influenced by groundwater flow conditions. Typical habitats are Northern wet heaths, Shady woodland fringes, Atlantic *Quercus robur* – *Betula* woods, *Alnus*–*Fraxinus* woods, etc.

3 Data and method of analysis

This study compares the groundwater characteristics of a lowland watershed in Belgium for the reference period 1960–1991 with those subject and under climate change conditions for the period 2070–2101. Figure 4 shows a conceptual overview of the applied spatial-temporal methodology. An ensemble of 28 climate change scenarios derived from multiple GCMs and RCMs and driven by multiple greenhouse emission scenarios is applied.

3.1 Climate change

Climate change scenarios are obtained from the PRUDENCE database and combine several GCMs: ECHAM4/OPYC, HadAM3H, HadAM3P, ARPEGE and HadCM3 and RCMs: RCAO, RACMO, HIRAM, CHRM, HadRM3P, REMO, ARPEGE, CLM and PROMES (Christensen and Christensen, 2007). All scenarios applied in this research are based on the A2 and B2 SRES greenhouse gas emission scenarios of the Intergovernmental Panel for Climate Change (IPCC) (Nakicenovic and Swart, 2000). In total, projections from 28 climate models runs were statistically analyzed, comparing the daily simulation results for precipitation and PET between the control period 1960–1991 and the scenario period 2070–2101. The precipitation results were obtained directly from the RCM outputs, and PET was calculated by Baguis et al. (2009) using the Penman equation based on the RCM outputs of mean sea level pressure, net terrestrial radiation, total solar radiation, cloud cover, temperature at 2 m, wind at 10 m and humidity. For each RCM simulation, the monthly changes from the control period to the scenario period were statistically analyzed in terms of changes in wet day frequencies (for precipitation) and wet day relative intensity changes (for precipitation and PET). The combination of frequency- and quantile-perturbation techniques allow to determine both the relative magnitude of the changes and the changes in extreme events. The intensity changes for precipitation were analyzed in relation to the exceedance probability of each intensity (Ntegeka et al., 2008). The changes in wet day frequencies and intensities were applied as changes to the historical time series (control period) with a daily time step using a statistical perturbation procedure (Ntegeka et al., 2008). More details on the frequency- and quantile-perturbation procedure can be found in Ntegeka and Willems (2008) and Willems and Vrac (2011).

25 3.2 Groundwater system modeling

The impact of climate change on the groundwater system is simulated by applying a coupled WetSpa – MODFLOW approach. WetSpa (Liu et al., 2003), a physically

Impact climate change on groundwater

J. Dams et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

based distributed hydrological model, simulates with a daily time step the river discharge at the outlet of the basin and the groundwater recharge for each 50 by 50 m model cell in the watershed. WetSpa updates the root zone water balance for all model cells during each timestep (Safari et al., 2011):

$$5 \quad D \frac{\partial \theta}{\partial t} = P - I - S - ET - R - F \quad (1)$$

where D [L] is root depth, θ [$L^3 L^{-3}$] soil moisture, P [$L T^{-1}$] precipitation, I [$L T^{-1}$] initial loss including interception and depression storage, S [$L T^{-1}$] surface runoff, ET [$L T^{-1}$] evapotranspiration, R [$L T^{-1}$] percolation out of the root zone, F [$L T^{-1}$] interflow, t [T] is time. The evapotranspiration flux includes, evaporation, transpiration from the root zone and direct uptake of groundwater by plants.

10 The rate of percolation (R_{rate}) or groundwater recharge in the WetSpa model is derived through the Brooks and Corey relationship (Brooks and Corey, 1964):

$$R_{\text{rate}} = K(\theta) = K_s \left(\frac{\theta - \theta_r}{\theta_s - \theta_r} \right)^{3 + \left(\frac{2}{B} \right)} \quad (2)$$

15 where $K(\theta)$ [$L T^{-1}$] is the unsaturated hydraulic conductivity, K_s [$L T^{-1}$] saturated hydraulic conductivity, θ_s [$L^3 L^{-3}$] water content at saturation, θ_r [$L^3 L^{-3}$] residual soil moisture content, and B [–] is the soil pore size distribution index. The soil pore size distribution index B is obtained from an empirically derived univariate regression, based on the percentage of clay content (Cosby et al., 1984).

20 Daily spatially distributed recharge results are aggregated over half monthly periods to be compatible with the MODFLOW time step. Additionally, the results of a hydraulic model for the main rivers in the basin are used to obtain half monthly average river heads for every 50 m transect of those rivers, based on WetSpa simulated river discharge at the basin outlet.

25 The groundwater flow model MODFLOW (Harbaugh et al., 2000) simulates the effect of the climate induced changes in river head and groundwater recharge on the

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

groundwater level and flux. The watershed boundaries of the model are set to no-flow boundaries. A conceptual hydrogeologic model is simulated using two model layers. The top layer of the model combines all hydrogeologic units except the Miocene aquifer, which is solely represented by the bottom model layer. The initial horizontal and vertical hydraulic conductivity are calculated using respectively the weighted arithmetic and harmonic mean of the hydraulic conductivities of the individual layers. To incorporate the inter-layer variability of hydraulic conductivity and specific yield within the upper MODFLOW layer, this layer is sub-divided into seven zones with different calibration multipliers. All major rivers, canals and lakes are simulated as internal boundaries and parameterized with the RIVER package. The RIVER package controls the flux exchanged between the groundwater system and the river, based on the river stage, the elevation of the bottom of the riverbed, the riverbed hydraulic conductance and the hydraulic head calculated for the particular model cell containing the surface-water feature. The river stage for the main rivers is adapted based on the WetSpa simulated river discharge at the outlet. The groundwater drainage from ditches, small streams and wetlands is simulated using the DRAIN/SEEPAGE package (Batelaan and De Smedt, 2004). In this module the flow to a drain is calculated depending on the drainage level and conductance. The drainage level is set to the highest location in the soil profiles where oxidation appears.

Because the ability of the models to simulate groundwater recharge and discharge is important in this paper, the baseflow is integrated in the calibration procedure. A measured baseflow timeseries is extracted using the baseflow filter developed by Arnold and Allen (1999). Figure 5 compares for the calibration period the baseflow extracted by the baseflow filter with the simulated baseflow of WetSpa and MODFLOW. It is shown that the baseflow simulated with the WetSpa model is very similar to the baseflow derived from the baseflow filter. The MODFLOW model, while using the WetSpa simulated recharge, tends to underestimate high baseflows. The WetSpa model was calibrated using measured river discharges and estimated baseflow at the catchment outlet. A Nash-Sutcliff efficiency of 73 % was obtained for the river discharge and 87 %

Impact climate change on groundwater

J. Dams et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

for the baseflow. The MODFLOW model is calibrated using 10 226 head observations measured between 1991 and 2001 from 113 observation wells (Fig. 1) more or less equally distributed over the basin. After calibration the MODFLOW model has an average bias between observed and simulated hydraulic head of -0.03 m , a mean average error of 0.59 m and a root mean square error of 0.81 m .

3.3 Groundwater level and flux analyses

In order to reduce the effect of the initial conditions, results of initial time steps are not used. The mean highest groundwater level (MHGL), mean lowest groundwater level (MLGL) and mean spring groundwater level (MSGL) are calculated respectively as the three highest, the three lowest and the three groundwater level measurements around the 1st of April per year, based on two weekly measurements, and averaging these values over at least eight years (Van der Sluijs and De Gruijter, 1985). In this study the MHGL, MLGL and MSGL for each model cell are estimated based on the half monthly groundwater level simulated by MODFLOW. The groundwater discharge frequency is calculated as the percentage of time steps in which a groundwater discharge to SEEP-AGE and RIVER cells is simulated for every 50 by 50 m cell of the MODFLOW model.

4 Results and discussion

4.1 Intra-annual impact of climate change on groundwater characteristics

Figure 6a illustrates the projected intra-annual change in PET, obtained from averaging the 32 yr simulation period. The average yearly PET of 664 mm yr^{-1} measured during 1960–1991 is predicted to increase almost 30 % with a standard deviation between the scenarios of 91 mm yr^{-1} . The increase in PET occurs almost completely between April and October. Figure 6b shows the reference and forecasted average precipitation within the basin for each time step. The total annual precipitation decreases on average by 50 mm, from 821 to 771 mm yr^{-1} with a standard deviation of 35 mm between

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Impact climate change on groundwater

J. Dams et al.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

average future groundwater discharge from February until May fluctuates around the groundwater discharge simulated for the reference climate. On the other hand, from August until December the groundwater discharge is predicted to decrease by more than 10 %.

5 4.2 Impact of climate change on average and extreme groundwater heads

Figure 7 illustrates the spatial impact of the climate change scenarios on the groundwater head. Compared with the reference scenario the groundwater head decreases most on the interfluves and near the fringes of the watershed where the average groundwater level can be as much as 30 cm lower. In the valleys the average groundwater level 10 decrease is generally less than 5 cm (Fig. 7a). For GWDTEs, especially the yearly extreme groundwater depths (MHGL, Fig. 7b and MLGL, Fig. 7c), and the MSGL (Fig. 7d) influence the plant species distribution. Both the MLGL and the MHGL show a generally decreasing trend. Similar to the average groundwater levels, the interfluves are more sensitive and show the greatest decrease in yearly extreme groundwater levels. 15 From Fig. 7b–d we notice that the largest decrease is obtained for the MLGL, for which an average decrease of 6 cm is simulated, with a standard deviation of 3 cm between the scenarios. The MHGL and MSGL decrease on average 3 and 1 cm, respectively. The standard deviation between the different scenarios is 5 cm for both MHGL and MSGL.

20 4.3 Impact of climate change on groundwater discharge

The climate also influences the groundwater interaction with surface water and groundwater discharge towards the land surface. Sufficient groundwater exfiltration is crucial for the presence of GWDTEs. Figure 8 presents for all model cells of the catchment 25 the change in groundwater discharge flux, averaged over time, between the reference condition and the average of all future scenarios. The scenarios predict for most cells a decrease in average groundwater discharge. Figure 8 also shows that the maximum

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

decrease is about 50 %. The highest decrease in groundwater discharge occurs in cells with a reference groundwater discharge flux of less than 1 mm d^{-1} where the average decrease is about 15 %. Groundwater discharge cells with a reference flux between 1 and 10 mm d^{-1} seem to be buffered quite well to the predicted climate changes. The 5 average total groundwater discharge from the basin decreases from 5.0 to $4.8 \text{ m}^3 \text{ s}^{-1}$ for the reference scenario and the average of the future scenarios, respectively.

In addition to the magnitude of groundwater discharge, the temporal availability of groundwater is important for GWDTEs. Figure 9 plots the change in groundwater discharge frequency versus the reference groundwater discharge frequency. The groundwater 10 discharge frequency of a cell is the temporal frequency that groundwater discharge occurs from this cell. Figure 9 shows that there is an average decrease in the frequency of groundwater discharge. The magnitude of groundwater discharge frequency will especially decrease for zones which originally had a groundwater discharge frequency between 40 and 90 %.

15 5 Conclusions

This paper discusses how climate changes alter the spatio-temporal dynamics of the groundwater system. Until now hydrological impact assessment of climate change has been focused primarily on peak flows and flood events. However, most GCMs predict that global warming is likely to amplify drought events over Europe. Consequently, 20 there is a growing concern on the future availability of water for drinking water supply, crop growth and natural vegetations throughout the year. Hence, there is an urgent need for more research on the impact of those drought events on low flows and on the groundwater system.

Our paper is one the first that analyzes the impact of climate change on the groundwater 25 system with a high spatio-temporal resolution at the watershed scale. Applying this high spatial and temporal resolution showed that the impact is highly variable both in space and time. We found that for our study area, situated in Western Europe,

Impact climate change on groundwater

J. Dams et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

[◀](#)

[▶](#)

[◀](#)

[▶](#)

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

the ensemble average of 28 climate change scenarios predict a decrease in summer groundwater recharge causing reduced groundwater heads and lower groundwater discharge fluxes especially in late summer-early autumn. Because of the increasing precipitation during winter the groundwater head and flux during spring are expected to decrease only slightly. Groundwater level changes are shown to be more pronounced on the interfluves and upstream in the catchment. The MHGL, MLGL and groundwater discharge frequency are likely to decrease at most places. The results also indicate the importance of applying transient climate change impact assessments due to the seasonal variations of the changes.

Additionally, our research shows the importance of applying an ensemble of climate change predictions. By applying 28 different climate scenarios obtained from different GCMs and RCMs we indicate the uncertainties associated with the results. As the uncertainties of the climate scenarios are large the additional uncertainties from the hydrological and groundwater flow models are not additionally taken into account. Due to the large uncertainties in the predictions of climate variables, especially precipitation, the predicted impact on the groundwater system obtained in this research should be considered as trends and order of magnitudes rather than exact predictions.

To reduce model calculation time and increase the model stability a loose coupling is applied between the surface water model Wetspa and the groundwater flow model MODFLOW. Further research should examine how models could be improved for assessing the impact of climate changes on the groundwater system, for example by including vegetation growth, physically based ET calculation, hourly time discretization, further coupling of surface-subsurface processes without increasing the data requirements and computation time too excessively.

Although it is advisable to mitigate climate change as much as possible it has become clear over the past decade that we will also have to adapt to climate change. To prevent the loss of groundwater dependent vegetation and reduced crop growth due to drought problems, resource managers should consider adaptive measures as soon as possible. An important message from the results is that GWDTEs are especially

Impact climate change on groundwater

J. Dams et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

vulnerable due to too low summer groundwater levels and reductions in the magnitude and frequency of groundwater discharge to the landscape.

Because climate models predictions are highly variable spatially (Solomon et al., 2007; Hendricks Franssen, 2009) similar research should be done for different hydro-climatologically and hydrogeological type locations to gain insight into the meteorological and basin characteristics controlling the impacts of climate change on groundwater systems.

Acknowledgements. The first author acknowledges the support of the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT). The second author acknowledges the support of the Flemish Institute for Technological Research (VITO) and The Research Foundation – Flanders (FWO). The Hydrological Information Center Flanders (hic@vlaanderen.be), Flemish agency of geographical information (AGIV) and institutions contributing to the Flemish subsurface database (<http://dov.vlaanderen.be>) are acknowledged for providing respectively discharge data, GIS data and groundwater heads used in this study.

15 References

Allen, D. M., Cannon, A. J., Toews, M. W., and Scibek J.: Variability in simulated recharge using different GCM's, *Water Resour. Res.*, 46, W00F03, doi:10.1029/2009WR008932, 2010. 10197

Arnold, J. G. and Allen, P. M.: Automated methods for estimating baseflow and ground water recharge from streamflow records, *J. Am. Water Resour. As.*, 35, 411–424, 1999. 10203

Baguis, P. E., Roulin, P., Willems, P., and Ntegeka, V.: Climate change scenarios for precipitation and potential evapotranspiration over central Belgium, *Theor. Appl. Climatol.*, 99, 273–286, doi:10.1007/s00704-009-0146-5, 2009. 10201

Batelaan, O. and De Smedt, F.: SEEPAGE, a new MODFLOW DRAIN Package, *Ground Water*, 42, 576–588, doi:10.1111/j.1745-6584.2004.tb02626.x, 2004. 10203

Brooks, R. H. and Corey, A. T.: Hydraulic properties of porous media, *Hydrology Papers* 3, Colorado State University, Fort Collins, USA, 1964. 10202

Chen, Z. H., Grasby, S. E., and Osadetz, K. G.: Predicting average annual groundwater levels

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Impact climate change on groundwater

J. Dams et al.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

from climatic variables: an empirical model, *J. Hydrol.*, 260, 102–117, doi:10.1016/S0022-1694(01)00606-0, 2002. 10197

Christensen, J. H. and Christensen, O. B.: A summary of the PRUDENCE model projections of changes in European climate by the end of this century, *Climate Change*, 81, 7–30, doi:10.1007/s10584-006-9210-7, 2007. 10199, 10201

5 Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R.: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soil, *Water Resour. Res.*, 20, 682–690, 1984. 10202

Dams, J., Woldeamlak, S. T., and Batelaan, O.: Predicting land-use change and its impact on 10 the groundwater system of the Kleine Nete catchment, Belgium, *Hydrol. Earth Syst. Sci.*, 12, 1369–1385, doi:10.5194/hess-12-1369-2008, 2008. 10199

Dickinson, J. E., Hanson, R. T., Ferre, T. P. A., and Leake, S. A.: Inferring time-varying recharge from inverse analysis of long-term water levels, *Water Resour. Res.*, 40, W07403, doi:10.1029/2003WR002650, 2004. 10198

15 Ferguson, M. and Maxwell, R. M.: Role of groundwater in watershed response and land surface feedbacks under climate change, *Water Resour. Res.*, 46, W00F02, doi:10.1029/2009WR008616, 2010. 10198

Feyen, L. and Dankers, R.: The impact of global warming on streamflow drought in Europe, *J. Geophys. Res.*, 114, D17116, doi:10.1029/2008JD011438, 2009. 10197

20 Goderniaux, P., Brouyère, S., Fowler, H. J., Blenkinsop, S., Therrien, R., Orban, P., and Dassargues, A.: Large scale surface-subsurface hydrological model to assess climate change impacts on groundwater reserves, *J. Hydrol.*, 373, 122–138, doi:10.1016/j.jhydrol.2009.04.017, 2009. 10198

Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., Treidel, H., and 25 Aureli, A.: Beneath the surface of global change: impacts of climate change on groundwater, *J. Hydrol.*, 405, 532–560, doi:10.1016/j.jhydrol.2011.05.002, 2011. 10197

Harbaugh, A. W. and McDonald, M. G.: 2000: MODFLOW-2000, the US Geological Survey modular groundwater model – User guide to modularization concepts and the groundwater flow process, USGS Open-File Report 00-92, US Geological Survey, Virginia, US, 2000. 30 10202

Hendricks Franssen, H.-J.: The impact of climate change on groundwater resources: the need for integrative approaches, *International Journal of Climate Change Strategies and Management* 1, 241–254, 2009. 10197, 10198, 10209

Holman, I. P.: Climate change impacts on groundwater recharge-uncertainty, shortcomings, and the way forward?, *Hydrogeol. J.*, 14, 637–647, doi:10.1007/s10040-005-0467-0, 2006. 10198

Hsu, K.-C., Wang, C.-H., Chen, K.-C., Chen, C.-T., and Ma, K.-W.: Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan, *Hydrogeol. J.*, 15, 903–913, doi:10.1007/s10040-006-0137-x, 2007. 10197

Jackson, C. R., Meister, R., and Prudhomme C.: Modelling the effects of climate change and its uncertainty on UK Chalk groundwater resources from an ensemble of global climate model projections, *J. Hydrol.*, 399, 12–28, doi:10.1016/j.jhydrol.2010.12.028, 2011. 10198

Jyrkama, M. I. and Sykes, J. F.: The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario), *J. Hydrol.*, 338, 237–250, doi:10.1016/j.jhydrol.2007.02.036, 2007. 10197, 10198

Kundzewicz, Z. W. and Döll, P.: Will groundwater ease freshwater stress under climate change?, *Hydrolog. Sci. J.*, 54, 665–675, 2009. 10196, 10197

Kundzewicz, Z. W., Mata, L. J., Arnell, N. W., Döll, P., Jimenez, B., Miller, K., Oki, T., Sen, Z., and Shiklomanov, I.: The implications of projected climate change for freshwater resources and their management, *Hydrolog. Sci. J.*, 53, 3–10, 2008. 10196, 10197

Liu, Y. B., Gebremeskel, S., De Smedt, F., Hoffmann, L., and Pfister, L.: A diffusive transport approach for flow routing in GIS-based flood modeling, *J. Hydrol.*, 283, 91–106, doi:10.1016/S0022-1694(03)00242-7, 2003. 10201

Maxwell, R. M. and Kollet, S. J.: Interdependence of groundwater dynamics and land-energy feedbacks under climate change, *Nat. Geosci.*, 1, 665–669, doi:10.1038/ngeo315, 2008. 10196

McCallum, J. L., Crosbie, R. S., Walker, G. R., and Dawes, W. R.: Impacts of climate change on groundwater in Australia: a sensitivity analysis of recharge, *Hydrogeol. J.*, 18, 1625–1638, doi:10.1007/s10040-010-0624-y, 2010. 10197

Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb, M. J., Collins, M., and Stainforth, D. A.: Quantification of modelling uncertainties in a large ensemble of climate change simulations, *Nature*, 430, 768–772, doi:10.1038/nature02771, 2004. 10197

Nakicenovic, N. and Swart, R.: *IPCC Special Report on Emissions Scenarios*, Cambridge Univ. Press, Cambridge, UK and New York, USA, 2000. 10201

Naumburg, E., Mata-Gonzalez, R., Hunter, R., McLendon, T., and Martin, D.: Phreatophytic vegetation and groundwater fluctuations: a review of current research and application of

Impact climate change on groundwater

J. Dams et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

5 Ntegeka, V. and Willems, P.: Climate change impact on hydrological extremes along rivers and urban drainage systems. Phase 3: Statistical analysis of historical rainfall, ET₀ and river flow series trends and cycles, Belgian Science Policy – SSD Research Programme, CCI-HYDR project by K. U. Leuven Hydraulics Section (Leuven) and Royal Meteorological Institute of Belgium, Brussels, Belgium, 37 pp., 2008. 10201

10 Ntegeka, V., Willems, P., Baguis, P., and Roulin, E.: Climate change impact on hydrological extremes along rivers and urban drainage systems, in: Summary report Phase 1: Literature review and development of climate change scenarios, Belgian Science Policy – SSD Research Programme, CCI-HYDR project by K.U. Leuven Hydraulics Section (Leuven) and Royal Meteorological Institute of Belgium, Brussels, Belgium, 64 pp., 2008. 10201

15 van Roosmalen, L., Sonnenborg, T. O., and Jensen, K. H.: Impact of climate and land use change on the hydrology of a large-scale agricultural catchment, *Water Resour. Res.*, 45, W00A15, doi:10.1029/2007WR006760, 2009. 10197, 10198

20 Rosenzweig, C., Casassa, G., Karoly, D. J., Imeson, A., Liu, C., Menzel, A., Rawlins, S., Root, T. L., Seguin, B., Tryjanowski, P., and Hanson C. E.: Assessment of observed changes and responses in natural and managed systems, in: *Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change*, edited by: Parry, M. L., Canziani, O. F., Palutikof, J. P., and van der Linden, P. J., Cambridge Univ. Press, Cambridge, UK, 79–131, 2007. 10196

25 Safari, A., De Smedt, F. and Moreda, F.: WetSpa model application in the Distributed Model Intercomparison Project (DMIP2), *J. Hydrol.*, in press, doi:10.1016/j.jhydrol.2009.04.001, 2011. 10202

Scibek, J. and Allen, D. M.: Modeled impacts of predicted climate change on recharge and groundwater levels, *Water Resour. Res.*, 42, W11405, doi:10.1029/2005WR004742, 2006. 10198

30 Scibek, J., Allen, D. M., Cannon, A. J., and Whitfield, P. H.: Groundwater-surface water interaction under scenarios of climate change using a high-resolution transient groundwater model, *J. Hydrol.*, 333, 165–181, doi:10.1016/j.jhydrol.2006.08.005, 2007. 10197, 10198

Serrat-Capdevila, A., Valdes, J. B., Perez, J. G., Baird, K., Mata, L. J., and Maddock, J.: Modeling climate change impacts and uncertainty on the hydrology of a riparian system: the San

Impact climate change on groundwater

J. Dams et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Pedro Basin (Arizona/Sonora), *J. Hydrol.*, 347, 48–66, doi:10.1016/j.jhydrol.2007.08.028, 2007. 10197, 10198

5 Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller H. L. (Eds.): Climate change, 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the IPCC, Cambridge Univ. Press, Cambridge, UK and New York, USA, 2007. 10197, 10209

United Nations World Water Assessment Programme (UN WWAP): The United Nations World Water Development Report 3: Water in a Changing World, UNESCO, Paris, France and Earthscan, London, UK, 2009. 10197

10 Van der Sluijs, P. and De Gruijter, J. J.: Water table classes: a method to describe seasonal fluctuation and duration of water tables on Dutch soil maps, *Agr. Water Manage.*, 10, 109–125, 1985. 10204

15 Willems, P. and Vrac, M.: Statistical precipitation downscaling for small-scale hydrological impact investigations of climate change, *J. Hydrol.*, 402, 193–205, doi:10.1016/j.jhydrol.2011.02.030, 2011. 10201

19 Woldeamlak, S. T., Batelaan, O., and De Smedt, F.: Effects of climate change on the groundwater system in the Grote–Nete catchment, Belgium, *Hydrogeol. J.*, 15, 891–901, doi:10.1007/s10040-006-0145-x, 2007. 10197, 10198

20 Wouters, L. and Vandenberghe, N.: Geologie van de Kempen: een synthese, Nationale instelling voor radio-actief afval en verrijkte splijtstoffen, Brussels, Belgium, 1994. 10200

Impact climate change on groundwater

J. Dams et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

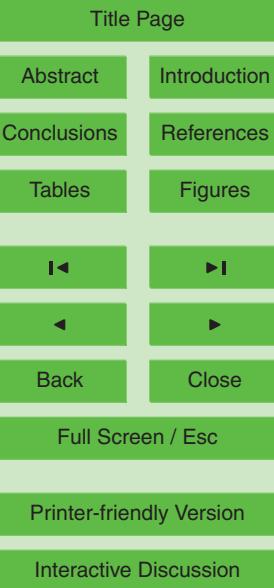
[Back](#)

[Close](#)

[Full Screen / Esc](#)

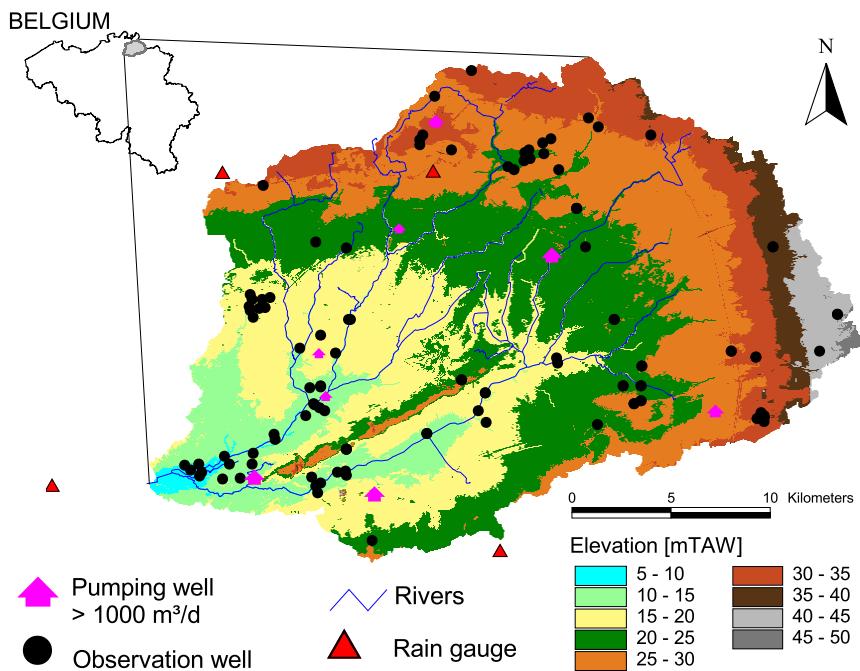
[Printer-friendly Version](#)

[Interactive Discussion](#)

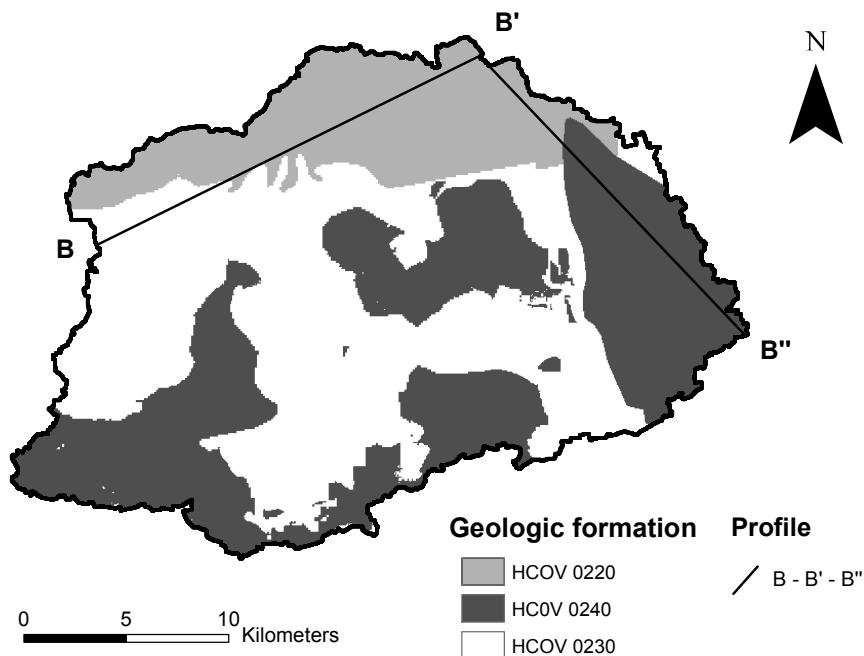


Impact climate
change on
groundwater

J. Dams et al.


Table 1. Overview of the hydrostratigraphy of the study area.

Aquifer code (HCOV)	Aquifer name	Hydraulic conductivity [m d^{-1}]	
		Mean	Range
0100	Quaternary aquifer	4.8	1–20
0220	Campine Clay-sand complex	9.4	5–15
0230	Pleistocene and Pliocene aquifer	20.5	4–40
0240	Pliocene clay layer	0.1	0.04–0.2
0250	Miocene aquifer	14.1	3–30


Impact climate change on groundwater

J. Dams et al.

Fig. 1. Location and topography of the study area including the geographical position of the observation and most important pumping wells and rain gauges.

Title Page	Abstract	Introduction
Conclusions	References	
Tables	Figures	
◀	▶	
◀	▶	
Back	Close	
Full Screen / Esc		
Printer-friendly Version		
Interactive Discussion		

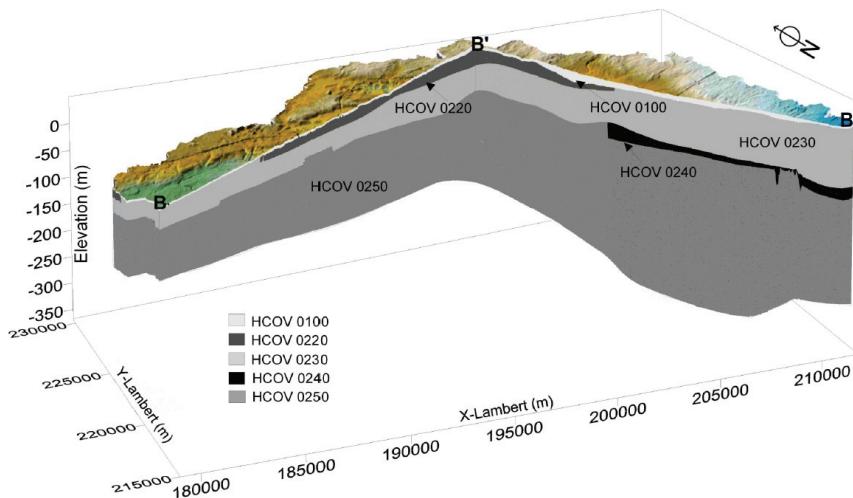


Fig. 2. Occurrence of Tertiary formations, the formations are described in Table 1. The profile B-B'-B'' is presented in Fig. 3.

- [Title Page](#)
- [Abstract](#) [Introduction](#)
- [Conclusions](#) [References](#)
- [Tables](#) [Figures](#)
- [◀](#) [▶](#)
- [◀](#) [▶](#)
- [Back](#) [Close](#)
- [Full Screen / Esc](#)
- [Printer-friendly Version](#)
- [Interactive Discussion](#)

**Impact climate
change on
groundwater**

J. Dams et al.

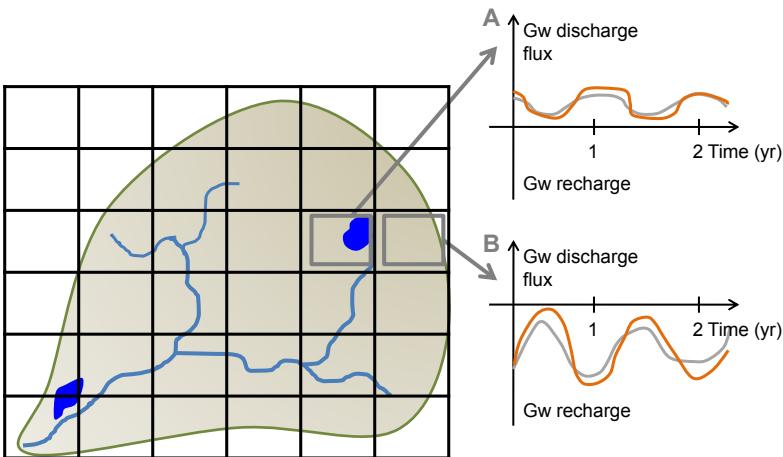


Fig. 3. Cross-section along profile B-B'-B'' presented in Fig. 2 showing the different Tertiary formations. The HCOV aquifer codes are given in Table 1.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[|◀](#)[▶|](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

Impact climate change on groundwater

J. Dams et al.

Fig. 4. Conceptual overview of the applied spatial-temporal methodology. The figure shows a watershed discretized using a rectilinear grid, surface water bodies are represented in blue. For every cell all waterbalance components are simulated daily and the runoff, interflow and groundwater flow are routed to the outlet of the catchment. Recharge and discharge are aggregated to halfmonthly time steps. Two cells in this figure are highlighted. Cell A represents a typical groundwater discharge area: during most time steps the groundwater in this cell flows from the groundwater system towards the land surface where the groundwater can discharge to the surface water bodies or be used for evapotranspiration. Cell B represents a typical recharge area where the water table is recharged by water infiltrating from the land surface. The graphs on the right show how the groundwater discharge or recharge flux typically evolve over time. In this study the groundwater system is simulated for the reference condition (grey line) and several climate change scenarios (e.g. orange line).

Title Page

Abstract

Introduction

Conclusion

References

Table:

Figures

Impact climate change on groundwater

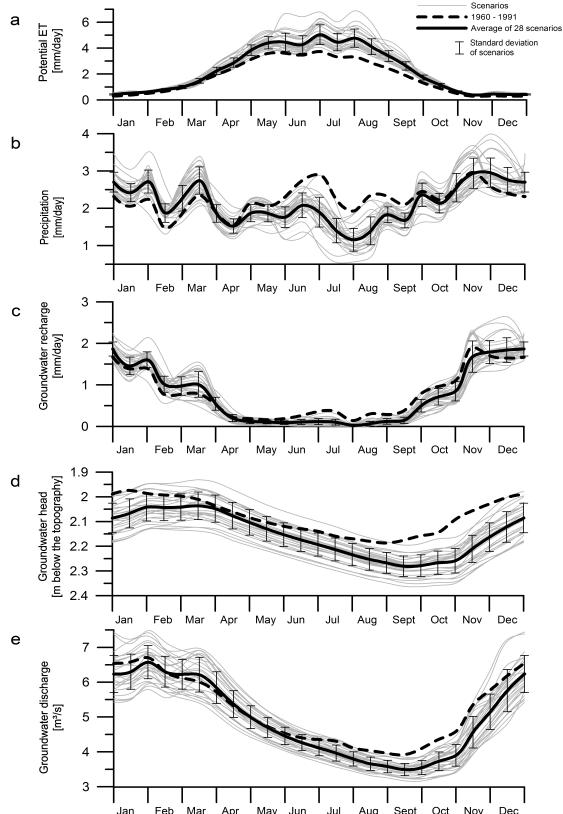

J. Dams et al.

Fig. 5. Comparison of the filtered baseflow, the baseflow simulated by WetSpa and the baseflow simulated by MODFLOW.

10219

Impact climate
change on
groundwater

J. Dams et al.

Fig. 6. Average intra-annual variability of (a) PET, (b) precipitation, (c) groundwater recharge, (d) groundwater head and (e) groundwater discharge for reference climate (1960–1991), 28 climate scenarios (2070–2101) and the average of the climate scenarios. One year is divided into 24 half monthly time steps, for every time step the average of 32 yr simulation is presented. Error bars represent one standard deviation between the climate scenarios.

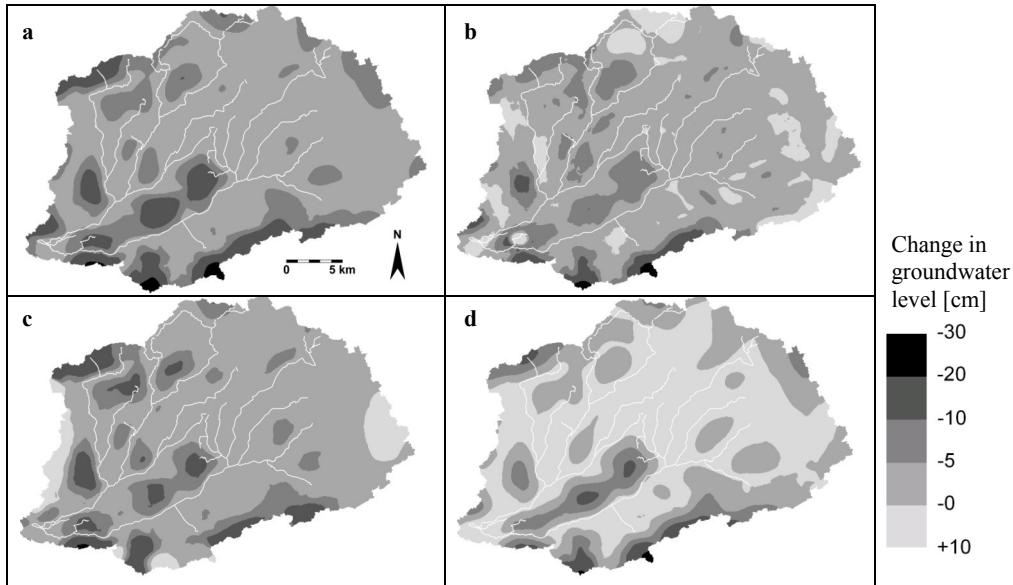
Full Screen / Esc

Printer-friendly Version

Interactive Discussion

◀

◀


Back

▶

Close

▶

▶

Fig. 7. Spatial distribution of the simulated change (average future minus reference) in temporally averaged: **(a)** groundwater level; **(b)** mean highest groundwater level (MHGL); **(c)** mean lowest groundwater level (MLGL); and **(d)** mean spring groundwater level (MSGL). Positive changes indicate an increase in groundwater level, negative changes indicate a decrease in groundwater level from the reference status to the average future state. Rivers are shown in white.

Impact climate change on groundwater

J. Dams et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

[|◀](#)

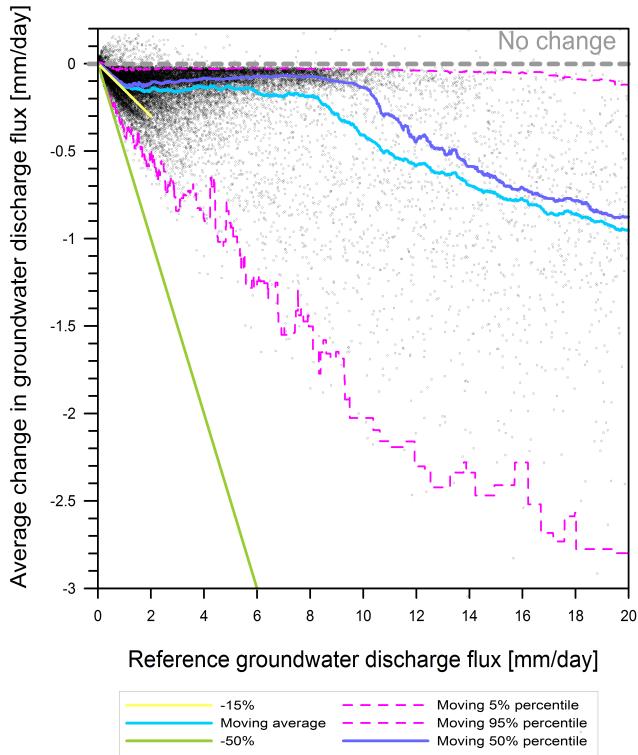
[▶|](#)

[◀](#)

[▶](#)

[Back](#)

[Close](#)


[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

**Impact climate
change on
groundwater**

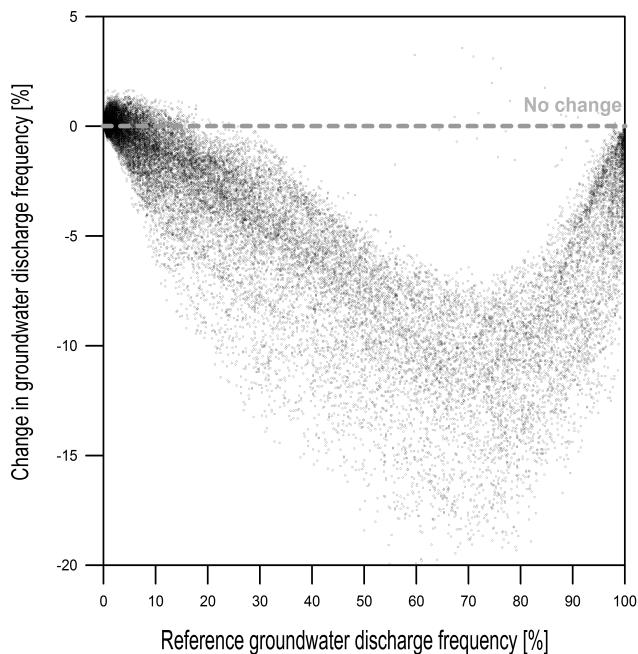

J. Dams et al.

Fig. 8. Scatter-plot showing the average change, from the reference period (1960–1991) to the period 2070–2101, in groundwater discharge flux (y-axis) of all model cells related to the reference groundwater discharge flux (x-axis). The reference groundwater discharge flux is averaged over time for each model cell. The moving average and percentiles are calculated over a range of 500 values. Indicating lines show the 50 % and 15 % decrease in groundwater discharge flux.

Impact climate change on groundwater

J. Dams et al.

Fig. 9. Scatter-plot of reference groundwater discharge frequency (x-axis) versus the average change from the reference period (1960–1991) to the period 2070–2101 in groundwater discharge frequency (y-axis). The groundwater discharge frequency is the percentage of time that a certain model cell has a positive groundwater discharge flux, the quantity of this flux is not taken into account. Every point in the graph represents a model cell in the watershed where at least during one time step of the reference period groundwater discharge occurs.